Handout 3

MATH 172 Lab: Sections 7 and 8
Lab Instructor (TA): Mohammed Kaabar

Student's Name: \qquad
Student's ID: \qquad
Note: This handout gives you just an introduction about how to use Maple software for numerical integration.

The Basic Steps to get started with MAPLE SOFTWARE:
First Step: Please go to MyMath website: http://www.my.math.wsu.edu
Second Step: Use your WSU username (firstname.lastname) as ID Network, and use your MyWSU password to login to MyMath website.

Third Step: Use your WSU username (firstname.lastname) as ID Network, and use your MyWSU password to login to MyMath website.

Fourth Step: Click on "Go To..." at the left top of the MyMath website, and then select "Software".
Fifth Step: Choose "Maple".
Sixth Step: You can now type Maple commands in the given text region, and then click on the "Run Maple" button.

Numerical Integration with MAPLE SOFTWARE:

Example 1: Calculate the area bounded by the graph of $f(x)=x^{2}$ and x-axis, between $x=0$ and $x=$ 8 for 4 sub-intervals using Riemann Sum and MAPLE software.

Solution:

$$
\begin{aligned}
& \text { Rimann Sum } \\
& \text { Riernits } 4 \text { sinb-intervals } \\
& \text { for } R_{4}=\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x=(2)(0)+(2)(4)+(2)(16)+2(36)=110
\end{aligned}
$$

$R_{4}=(2)(4)+(2)(16)+(2)(36)+(2)(64)=236$

Now, let's use MAPLE for the Midpoint Rule for $n=20$ sub-intervals as follows:

```
with(Student[Calculus1]):
Q:=ApproximateInt(x^2,x=0..8, method=midpoint, partition=20);
evalf(Q);
ApproximateInt( }\mp@subsup{x}{}{\wedge}2,x=0..8, method=midpoint, partition=20, output=plot)
\begin{tabular}{c} 
Save \\
Load \\
\hline
\end{tabular}
MAPLE \({ }_{\text {output }}\)
Print this page by clicking here. (DO NOT use the File->Print menu item.)
```

$$
Q:=\frac{4264}{25}
$$

```
```

> with(Student[Calculus1]):

```
> with(Student[Calculus1]):
>Q:=ApproximateInt( }\mp@subsup{\textrm{x}}{}{\wedge}2,\textrm{x}=0..8, method=midpoint, partition=20)
```

>Q:=ApproximateInt(}\mp@subsup{\textrm{x}}{}{\wedge}2,\textrm{x}=0..8, method=midpoint, partition=20)

```
```

> evalf(Q);

```
```

> evalf(Q);

```
> ApproximateInt ( \(x^{\wedge} 2, x=0 . .8\), method=midpoint, partition=20, output=plot);


Example 2: Define the following function and plot it using MAPLE software.
a. \(f(x)=x^{4}-3 x^{3}+x^{2}+x+1\)

We define multiplication as "*", and power, say to \(x^{4}\), as " \(\mathbf{x}^{\wedge} \mathbf{4}\) ".
Therefore, our function can be defined and plotted as follows: (NOTE: PLEASE DO NOT FORGET THE SEMICOLON AT THE END OF EACH CODE)
\(>f:=x->x^{\wedge} 4-3 * x^{\wedge} 3+x^{\wedge} 2+x+1 ;\)
\[
f:=x \rightarrow x^{4}-3 x^{3}+x^{2}+x+1
\]
\(>\operatorname{plot}(\mathrm{f}(\mathrm{x}), \mathrm{x}=-1 . .3, \mathrm{y}=-2 \ldots 3)\);


\section*{GOOD LUCK IN THE NUMERICAL INTEGRATION LAB}```

