Math 172: Second Semester Calculus

Fall Semester, 2014

Final Exam

\#	1	2	3	4	5	6	7	subtotal
worth	11	11	11	11	11	10	11	

$\#$	8	9	10	11	12	13	14	subtotal	total
worth	10	10	11	11	11	10	11		

\qquad Section:

Work must be shown to receive credit. No calculators.

Solutions

Question 1. (11 points). Find the volume of the following solid of revolution: the region bounded by $y_{1}=\sqrt{x}$ and by $y_{2}=x$ revolved about the x-axis.

$$
\begin{gathered}
R=x \\
r=\sqrt{x} \\
V=\pi \int_{0}^{1}\left(R^{2}-r^{2}\right) d x \\
=\pi \int_{0}^{1}\left(x-x^{2}\right) d x \\
=\pi\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{\pi}{6}
\end{gathered}
$$

Question 2. Evaluate the following indefinite and definite integrals.
a.

$$
\begin{aligned}
& \left(6 \text { points) } \int_{0}^{\pi / 3} x \sin (3 x) d x\right. \\
& \begin{array}{rl}
\int_{0}^{\pi / 3} & x \sin (3 x) d x=\left.\frac{-x}{3} \cos (3 x)\right|_{0} ^{\pi / 3}+\int_{0}^{\pi / 3} \frac{\cos (3 x)}{3} d x \\
& =\frac{\pi}{9}+\left.\frac{\sin (3 x)}{9}\right|_{0} ^{\pi / 3}=\frac{\pi}{9}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. (5 points) } \int \frac{6}{x-x^{2}} d x \\
& =6 \int \frac{-1}{x(x-1)} d x=6 \int\left[\frac{A}{x}+\frac{B}{1-x}\right] d x \\
& A-A x+B x=1 \Rightarrow A=1, B=1 \\
& \text { b } \int\left[\frac{1}{x}+\frac{1}{1-x}\right] d x=b[\ln |x|-\ln |1-x|]+C
\end{aligned}
$$

Question Ba. (5 points) Evaluate the infinite series:

$$
\sum_{k=0}^{\infty} 2 e^{-k}
$$

$\sum 2 e^{-k}=2 \sum e^{-k} \quad\left|e^{-k}\right|<1 \Rightarrow$ use geometric series:

$$
\sum_{k=0}^{\infty} e^{-k}=\frac{1}{1-1 / e}=\frac{e}{e-1} \text {. Thus, } \sum 2 e^{-k}=\frac{2 e}{e-1}
$$

b. (6 points) Use a convergence test of your choice to determine whether the following series converges or diverges.

$$
\sum_{k=1}^{\infty} \frac{100}{\sqrt{k^{3}+1}}
$$

Div test fails.
Using comparison test: $\frac{100}{\sqrt{k^{3}+1}} \sim \theta \frac{1}{\sqrt{k^{3}+1}}<\left(\frac{1}{k+1}\right)^{3 / 2}$ By P-series test, this converges. so $\sum \frac{100}{\sqrt{k^{3}+1}}$ conv. as well

Question 4. (11 points) Determine whether the following series is absolutely convergent, conditionally convergent or divergent.

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2 / 3}}
$$

By alternating series test, this conc. Since $\frac{1}{k^{2 / 3}} \rightarrow 0$
Q $\sum\left|\frac{(-1)^{k}}{k^{4 / 3}}\right|=\sum\left(\frac{1}{k}\right)^{2 / 3}$ div. using p-series test.
(or integral)
So the series conn. cold.

Question 5. (11 points) Let $f(x)=\frac{x}{1+x^{2}}$ and let $\frac{x}{1+x^{2}}=c_{0}+c_{1} x+c_{2} x^{2}+$ $\xi_{3} x^{3}+\cdots$ be its Maclaurin series expansion (also known as its Taylor series expansion about 0). Find the coefficients c_{0}, c_{1}, c_{2} and c_{3}.

$$
\begin{aligned}
& f(x)=\frac{x}{1+x^{2}}=x\left(1+x^{2}\right)^{-1} \\
& f^{\prime}(x)=\left(1+x^{2}\right)^{-1}-x\left(1+x^{2}\right)^{-2} \cdot 2 x=\left(1+x^{2}\right)^{-1}-2 x^{2}\left(1+x^{2}\right)^{-2} \\
& f^{\prime \prime}(x)=-\left(1+x^{2}\right)^{-2} \cdot 2 x-4 x\left(1+x^{2}\right)^{-2}+4 x^{2}\left(1+x^{2}\right)^{-3} \cdot 2 x=-6 x\left(1+x^{2}\right)^{-2}+g x^{3}\left(1+x^{2}\right)^{3} \\
& f^{\prime \prime \prime}(x)=-6\left(1+x^{2}\right)^{-2}+12 x\left(1+x^{2}\right)^{-3} \cdot 2 x+8 \cdot 3 x^{2}\left(1+x^{2}\right)^{-3}-24 x^{3}\left(1+x^{2}\right)^{-4}-2 x \\
& f(0)=1 \\
& f^{\prime}(0)=1 \\
& f^{\prime}(0)=0 \quad c_{0}=\frac{f(0)}{0!}=1 \\
& f^{\prime \prime \prime}(0)=-6, \\
&
\end{aligned}
$$

$$
\Rightarrow f(0)=1
$$

Question 6. (10 points) Give parametric equations that describe a full circle of radius 2 , centered on the origin with clockwise orientation, where the parameter t varies over the interval $[0,2]$. Assume that the circle starts at the point $(x, y)=(2,0)$.

$$
\text { Since } x=f(t), \quad f(0)=2,
$$

$$
\begin{aligned}
& \text { Since } x=t(t) \\
& f(t)=2 \cos (\pm \pi t) \leftarrow_{\text {and }} \text { Even } \\
& g(t)=2 \sin (\pm \pi t)
\end{aligned}
$$

clockwise means $f^{\prime}(t), g^{\prime}(t) \leq 0$ at $0 \leq t \leq$
$f^{\prime}(t)=\mp 2 \pi \sin (\pm \pi t) \leqslant$ Either works. $g^{\prime}(t)= \pm 2 \cos (\pm \pi t)$.

So $g(t)=2 \sin (-\pi t)$

$$
(x, y)=(2 \cos (\pi t),-2 \sin (\pi t))
$$

Question ta, (5 points) Write equations for how x and y depend on r and θ if polar coordinates on the graph below.

$$
x=r \cos \theta \quad y=r \sin \theta
$$

[will insert graph here)

Question 7b, (6 points) Assuming that a polar equation is given in the form $r=f(\theta)$, derive a formula for the derivative $d y / d x$.

Hint: $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}$

$$
\frac{\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}}{d x / d \theta}=\frac{\frac{d}{d \theta} r \sin \theta}{\frac{d}{d \theta} r \cos \theta}=\frac{r^{\prime} \sin \theta+r \cos \theta}{r^{\prime} \cos \theta-r \sin \theta}
$$

Question 8. (10 points) Find the slope of the graph of the curve $r=$ $5 \sin (\theta)$ in the xy-plane at the point $(r, \theta)=\left(\frac{5}{2}, \frac{\pi}{6}\right)$.
Hints: For the graph of $r=f(\theta), \frac{d y}{d x}=\frac{f^{\prime}(\theta) \sin (\theta)+f(\theta) \cos (\theta)}{f^{\prime}(\theta) \cos (\theta)-f(\theta) \sin (\theta)}$, and $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}, \quad \cos \left(\frac{\pi}{6}\right)=\sqrt{3} / 2$.

$$
r^{\prime}=5 \cos \theta
$$

$$
\begin{aligned}
\frac{d y}{d x}=\frac{r^{\prime} \sin \theta+r \cos \theta}{r^{\prime} \cos \theta-r \sin \theta} & =\frac{\phi \sin \theta \cos \theta+\not \phi \sin \theta \cos \theta}{\not \cos ^{2} \theta-\not \$ \sin ^{2} \theta} \\
= & \frac{2 \cos \theta \sin \theta}{1-2 \sin ^{2} \theta}
\end{aligned} \begin{aligned}
& =\frac{2-1 / 2-\sqrt{3} / 2}{1-2-1 / 4} \\
& =\frac{\sqrt{3} / 2}{1 / 2}=\sqrt{3}
\end{aligned}
$$

Quessition 9. (1.0 points) Draw the graph of the polar curve $r=$ $3 \sin (2 \theta), D \leq \theta \leq \pi / 2$, in the $x y$-plane. Use tick marks at unit intervals on the watt y axes to show the length scale.

$$
\begin{array}{ll}
3 \sin (0)=0 & \theta=0 \\
3 \sin (\pi)=0 & \theta=\pi / 2 \\
3 \sin (\pi / 2)=3 & \theta=\pi / 4
\end{array}
$$

Question 10. (11 points) Find the area of the polar curve $r=3 \sin (2 \theta)$ in the first quadrant.

$$
\begin{aligned}
& A=\frac{1}{2} \int_{0}^{\pi / 2} r^{2} d \theta=\frac{1}{2} \int_{0}^{\pi / 2} 9 \sin ^{2}(4 \theta) d \theta \\
= & \frac{9}{2} \int_{0}^{\pi / 2} \frac{1-\cos (8 \theta)}{2} d \theta \\
= & \frac{9}{4}\left[\theta=\frac{1}{8} \sin (8 \theta)\right]_{0}^{\pi / 2} \\
= & \frac{9}{4}\left[\pi / 2-\frac{1}{8} \sin [4 \pi]=\frac{9 \pi}{8}\right.
\end{aligned}
$$

Question 11. Given vectors $u=\langle 2,5\rangle$ and $v=\langle 3,4\rangle$:
a. (3 points) Find $2 u-v$,

$$
\begin{aligned}
2\langle 2,5\rangle-\langle 3,4\rangle & =\langle 4,10\rangle-\langle 3,4\rangle \\
& =\langle 1,6\rangle
\end{aligned}
$$

b. (3 points) Find $|u|$,

$$
|u|=\sqrt{4+25}=\sqrt{29} .
$$

c. (3 points) Find a vector of length 2 in the direction of direction of v.

$$
\frac{2}{\sqrt{29}} \cdot\langle 2,5\rangle
$$

d. (2 points) Express u as a combination of the unit vectors i and j.

$$
u=2 i+5 j \text {. }
$$

Question 12
a. (4 points) Define the dot product $u \cdot v$ of the vectors u and v in terms of their magnitudes and the angle 0 between them.

$$
u \cdot v=4 V \cdot \cos \theta \text {, }
$$

b. $(3$ points $)$ Compute $\{1,2,3\rangle,\langle 3,-2,1\rangle$,

$$
3+(-4)+3=2
$$

c. (4 points) Give the scalar projection of $\langle 1,2,3\rangle$ onto $\langle 3,-2,1\rangle$,

$$
\begin{aligned}
& \frac{\langle 1,2,3\rangle}{1\langle 3,-2,1\rangle 1} \\
= & \frac{2}{\sqrt{9+4+1}}=\frac{2}{\sqrt{14}}
\end{aligned}
$$

Question 13. (10 points) Find the area of the triangle whose vertices are the points $O(0,0,0), P(3,0,0)$ and $Q(2,2,0)$.

Question 14. (11 points) Find the equation of the line passing through the points $P(1,2,3)$ and $Q(3,-2,1)$.

$$
\langle 1,2,3\rangle+t\langle 2,-4,-2\rangle
$$

