MATH 172 Lab: Sections 7 and 8
Lab Instructor (TA): Mohammed Kaabar
student's Name:--Mammed RARaabur
Student's ID:-

Note: This study guide contains my practice questions that I think will be useful for preparing you for the second exam in Calculus II.
Question 1: Evaluate the integral: $\int \cos (\sqrt[3]{x}) d x$.

$$
\text { Let } \begin{aligned}
w & =\sqrt[3]{x} \\
w^{3} & =x
\end{aligned}
$$

Take the derivative of both sides $\Rightarrow 3 w^{2} d w=d x$

Question 2: Evaluate the integral: $\int \sqrt{\sin (x)} \cos ^{5}(x) d x$.

$$
\begin{aligned}
& \Rightarrow \int \sqrt{\sin (x)} \cos ^{5} x d x=\int \sqrt{\sin (x)} \cos ^{4} x \cos x d x= \\
& \left.=\int \sqrt{\sin (x)}\left(1-\sin ^{2} x\right)^{2} \cos x d x\right)\left[\begin{array}{l}
u=\sin (x) \\
d u=\cos (x) d x
\end{array}\right. \\
& =\int u^{1 / 2}\left(1-u^{2}\right)^{2} d u=\int u^{1 / 2\left(1-2 u^{2}+u^{4}\right) d u=} \\
& =\int\left[u^{1 / 2}-2 u^{5 / 2}+u^{9 / 2}\right] d u=\frac{u^{3 / 2}}{3 / 2}-2 \frac{u^{7 / 2}}{1 / 2}+\frac{u^{1 / 2}}{11 / 2}+c
\end{aligned}
$$

$\Rightarrow \sqrt[3]{\sqrt[3]{\tan (x)}} \sec ^{6}(x) d x=\int \sqrt[3]{\tan (x)} \sec ^{4} x \sec ^{2} x d x$

$$
+2 w \cos (w)+6 \sin (w)+C
$$

$$
=\int \sqrt[3]{\tan (x)}\left(\tan ^{2} x+1\right)^{2} \frac{\sec ^{2} x d x}{} \begin{aligned}
& u=\tan \\
& d u=s
\end{aligned}
$$

$=\int u^{1 / 3}\left(u^{2}+1\right)^{2} d u \quad l \begin{aligned} & u=\tan x \\ & d u=\sec ^{2} x d x\end{aligned}$ Thus, $\int \cos (\sqrt[3]{x}) d x=-3(\sqrt[3]{x})^{2} \sin (\sqrt[3]{x})+$
$=\int u^{1 / 3}\left(u^{4}+2 u^{2}+1\right) d u=\int\left[u^{3 / 3}+2 u^{7 / 3}+u^{1 / 3}\right] d u$

$$
\rightarrow=\frac{u^{16 / 3}}{16 / 3}+\frac{2 u^{10 / 3}}{10 / 3}+\frac{u^{4 / 3}}{4 / 3}+c=\frac{(\tan x)^{16 / 3}}{16 / 3}+2 \frac{(t a x x)^{10 / 3}}{10 / 3}+\frac{1+4 x / 3 / 9}{4 / 3+c}
$$

Question 4: Evaluate the integral using trigonometric substitution: $\int \frac{1}{x^{3} \sqrt{\square{ }^{2}}} d x$.

$$
1+\tan ^{2} \theta=\sec ^{2} \theta
$$ $\sec ^{2} \theta-1=\tan ^{2} \theta$

$$
\begin{aligned}
& \sqrt{x^{2}-4}=\sqrt{(2 \sec \theta)^{2}-4}=\sqrt{4 \sec ^{2} \theta-4}=\sqrt{4\left(\sec ^{2} \theta-1\right)}=2 \sqrt{\sec ^{2} \theta-1}= \\
& =2 \sqrt{\tan ^{2} \theta}=2 \tan \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{16} \theta+\frac{2}{32} \sin (\theta) \cos (\theta)+C \\
& \cos ^{2} \theta=\frac{1+\operatorname{Cos}(2 \theta)}{2} \\
& \sin ^{2} \theta=\frac{1-\cos (2 \theta)}{2} \\
& \text { Question 5: Evaluate the integral: } \int \frac{4 x}{\left(x^{2}-1\right)\left(x^{2}+1\right)} d x \text {. } \\
& \frac{4 x}{(x-1)(x+1)\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B}{x+1}+\frac{C x+D}{x^{2}+1} \\
& 4 x=A(x+1)\left(x^{2}+1\right)+B(x-1)\left(x^{2}+1\right)+(C x+D(x-1)(x+1) \\
& x=1: 4=4 A \Rightarrow A=1 \\
& x=-1:-4=-4 B \Rightarrow B=1 \\
& =\left[\frac{1}{16} \sec ^{-1}\left(\frac{x}{2}\right)+\frac{1}{16} \frac{\sqrt{x^{2}-4}}{x} \cdot \frac{2}{x}\right]+C \\
& =\frac{1}{16} \sec ^{-1}\left(\frac{x}{2}\right)+\frac{1}{8} \frac{\sqrt{x^{2}-4}}{x^{2}}+C \\
& \text { We know } \\
& \sin (2 \theta)=2 \sin (\theta) \cos (\theta)
\end{aligned}
$$

$d x=2 \sec \theta \tan \theta d \theta$
$x=0: 0=A-B-D$
$x=2: 8=15 A+5 B+(2 C+D)(3) \Rightarrow 8=15+5+6 C \Rightarrow C=-2$
Thins, $\int\left[\frac{1}{x-1}+\frac{1}{x+1}-\frac{2 x}{x^{2}+1}\right] d x=\ln |x-1|+\ln |x+1|-\ln \left|x^{2}+1\right|+C$

Question 6: Solve the following differential equation:

$$
\text { This } \int \frac{\ln (x+1)}{x^{3}} d x=
$$

(There is no need to write your solution as $y(x)$ in this problem)

$$
=\begin{aligned}
& =\frac{-1}{2 x^{2}} \ln (x+1)-\frac{1}{2} \ln |x|-\frac{1}{2 x}+7 \\
& L \ln |x+1|+C
\end{aligned}
$$

$$
\text { Let } w=(2 x+y)
$$

$$
\frac{1}{2} \ln |x+1|+C
$$

$$
\begin{aligned}
& \text { Let } w=(2 x+y) \\
& \Rightarrow \frac{d u}{d x}=2+\frac{d y}{d x}
\end{aligned} \text { Solve for } \frac{d y}{d x} \text { as follows: }
$$ his is

$$
\square
$$ the final answer

$\frac{d y}{d x}=\frac{d w}{d x}-2 \Rightarrow$ Now, do the substitution:

$$
\begin{aligned}
& \left(\frac{d y}{d x}\right)=\frac{d w}{d x}-2 \Rightarrow \frac{w^{2}-1}{w+4}-九 \Rightarrow \frac{d w}{d x}=\frac{w^{2}-1}{w+4} \Rightarrow \frac{d w}{d x} \neq \frac{1}{\frac{d w+4}{w^{2}-1}} \\
& \frac{d w}{d x}-2=\frac{w}{w+4} \\
& \Rightarrow \frac{w+4}{w^{2}-1} d w=d x \Rightarrow \frac{w+d x=0}{w^{2}-1} d w+\frac{w+4}{w^{2}-1} d w+\int d x=\int 0 \\
& \text { use portia fractions }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{w+4}{w^{2}-1} d w=d x \rightarrow w^{2}-1 \\
& \Rightarrow \int \frac{w+4}{w^{2}-1} d w-x=C \Rightarrow \int \frac{l e t ' s ~ e v a l n a t e}{} \frac{w+4}{w^{2}-1} d w \text { by partial fractions } \\
& \left.\left.\Rightarrow \frac{5}{2} \ln \right\rvert\,(2 x+y)-1\right)-\frac{3}{2} \ln |(2 x+y)+1|-x
\end{aligned}
$$ where (Question $7:$ Evaluate the thitegral: $J \frac{\operatorname{mn}(x+1)}{x^{3}} d x$

$$
\begin{array}{ll}
u=\ln (x+1) & d v \\
=x^{-3} d x \\
v & =x^{-2}
\end{array}
$$

$$
\begin{aligned}
& u=\ln (x+1) \\
& d u=\frac{1}{x+1} d x \longleftrightarrow v=\frac{x^{-2}}{-2}, \longrightarrow-2
\end{aligned}
$$

$$
\int \frac{\ln (x+1)}{x^{3}} d x=-\frac{1}{2} \ln (x+1) x^{-2}+\frac{1}{2} \int \frac{1}{x^{2}(x+1)} d x
$$

$$
=\frac{-1}{2 x^{2}} \ln (x+1)+\frac{1}{2} \int \frac{1}{x^{2}(x+1)} d x \text { fraction }
$$

$$
\Rightarrow \frac{1}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}
$$

$$
\left\{\begin{array}{l}
x^{2}(x+1) \\
1=A x^{2}(x+1)+B x(x+1)+C(x) \\
x=0: 1=B, x=1: 1=C \\
x=1: 1=2 A+2 B+C \Rightarrow A=-1
\end{array}\right.
$$

$$
\begin{aligned}
& x=0: 1=2 A+2 B+C \Rightarrow A=-1 \\
& x=1: 1
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \frac{w+4}{(w-1)(w+1)}=\frac{A}{w-1}+\frac{B}{w+1} \\
A=\frac{1+4}{1+1}=\frac{5}{2} \\
B=\frac{-1+4}{-1-1}=\frac{3}{-2}=-\frac{3}{2} \\
\\
{\left[\left(\left[\frac{5 / 2}{w-1}\right]+\left[\frac{-3 / 2}{w+1}\right]\right) d w=\right.} \\
=\frac{5}{2} \ln |w-1|-\frac{3}{2} \ln |w+1|+C \\
=\frac{5}{2} \ln |(2 x+y)-1|-\frac{3}{2} \ln |(2 x+y)+1|+C
\end{gathered}
$$

$$
\begin{aligned}
& \left.\left.=\frac{5}{2} \ln \right\rvert\,(2 x+y)-1\right) \\
& \left.2+\frac{1}{x+1}\right] d x=-\ln (x)+\frac{x^{-1}}{-1}+\ln |x+1|+\frac{[4}{c}
\end{aligned}
$$

Question 8: Use the definition of improper integrals to evaluate the following
integral: $\int_{0}^{1} x \ln (x) d x$.

$$
\begin{aligned}
& u=\ln x \quad d v=x d x \\
& d u=\frac{1}{x} \longleftrightarrow v=\frac{x^{2}}{2} \\
& \int x \ln (x) d x=\frac{1}{2} x^{2} \ln (x)-\frac{1}{2} \int x d x \\
& =\frac{1}{2} x^{2} \ln (x)-\frac{1}{2} \frac{x^{2}}{2}+C \\
& \text { So/ } \int_{t}^{1} x \ln (x) d x=\frac{1}{2} x^{2} \ln (x)-\left.\frac{1}{4} x^{2}\right|_{t} ^{1} \\
& =\left[\frac{1}{2}(1) \ln (1)-\frac{1}{4}(1)^{2}\right]-\left[\frac{1}{2}(t) \ln (t)-\frac{1}{4} t^{2}\right]
\end{aligned}
$$

Question 9: Use the definition of improper integrals to evaluate the following integral: $\int_{0}^{1} \frac{1}{\sqrt{1-x}} d x$.

$$
\begin{aligned}
& \int_{0}^{1} \frac{1}{\sqrt{1-x}} d x=\lim _{t \rightarrow 1} \int_{0}^{\int_{0}} \frac{1}{\sqrt{1-x}} d x \\
& \int_{\sqrt{1-x}} \frac{1}{\sqrt{1-x}} d x \quad\left(\begin{array}{l}
u=1-x \\
d u=d x
\end{array}\right] \\
& \Rightarrow-\left(\frac{1}{\sqrt{u}} d u=-\int u^{-1 / 2} d u=\frac{-u^{1 / 2}}{1 / 2}=-2 u^{1 / 2}=-2 \sqrt{u}=-2 \sqrt{1-x}\right. \\
& S_{0} \int_{0}^{1} \frac{1}{\sqrt{1-x}} d x=-\left.2 \sqrt{1-x}\right|_{0} ^{t}=-2 \sqrt{1-t}+2 \\
& \lim _{t \rightarrow 1}[-2 \sqrt{1-t}+2]=-2 \sqrt{1-1}+2=2 \text { Convergent by }
\end{aligned}
$$

the definition of improper integrals. Is

Question 10: Evaluate the integral: $\int \frac{x^{3}}{x^{2}+1} d x$.
(Hint: Use long division)

$$
\begin{aligned}
& \int \frac{x^{3}}{x^{2}+1} d x=\int\left[x-\frac{x}{x^{2}+1}\right] d x= \\
& =\frac{x^{2}}{2}-\frac{1}{2} \ln \left|x^{2}+1\right|+C \\
& \operatorname{tin} 5, \int \frac{x^{3}}{x^{2}+1} d x=\frac{x^{2}}{2} x^{2}-\frac{1}{2} \ln \left|x^{2}+1\right|+C
\end{aligned}
$$

Long Division
degree (numerator) \geqslant degree (denimonator)

Question 11: Evalatace he integral: $\sec ^{3}(x) d x$. By parts

$$
\begin{aligned}
& u=\sec (x) \rightarrow v=\sec ^{2} x d x \\
& d u=\sec (x) \tan (x) d x \longleftrightarrow \int \sec ^{3} x d x=\int \sec ^{2} x \sec (x) d x \\
& d x)
\end{aligned}
$$

$$
\int \sec ^{3}(x) d x=\sec (x) \tan (x)-\int \sec (x) \tan ^{2}(x) d x
$$

Continue:
Ins, $\int \sec ^{3}(x) d x=$

$$
\begin{aligned}
& \frac{1}{2}(\sec (x) \tan (x))+ \\
& \frac{1}{2} \ln |\sec (x)+\tan (x)|+C
\end{aligned}
$$

We know

$$
\begin{aligned}
& \begin{array}{l}
1+\tan ^{2}(x)=\sec ^{2}(x) \\
\tan ^{2}(x)=\sec ^{2}(x)-1
\end{array} \\
& 2 \int \sec ^{3}(x) d x= \\
& \sec (x) \tan (x)+ \\
& \int \sec (x) d x \\
& =\sec (x) \tan (x)+
\end{aligned}
$$

Question 12: Find the expression for the $\mathrm{n}^{\text {th }}$ term for each of the following sequences, and then determine whether it is convergent or divergent:

Part a: $\left\{2, \frac{3}{\sqrt{2}}, \frac{4}{\sqrt{3}}, \ldots\right\}$

$$
a_{n}=\frac{n+1}{\sqrt{n}} \Longrightarrow\left\{\frac{n+1}{\sqrt{n}}\right\}_{n=1}^{\infty}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(n)+1}{(\sqrt{n})}=l_{n \rightarrow 0} \\
& \text { Part b: }\left\{1, \frac{1}{8}, \frac{1}{27}, \frac{1}{64}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\frac{1}{n^{3}} \Rightarrow\left\{\frac{1}{n^{3}}\right\}_{n=1}^{\infty} \\
& \lim _{n \rightarrow \infty} \frac{1}{n^{3}}=\frac{1}{\infty}=0 \text { Convergent }
\end{aligned}
$$

Question 13: Determine whether the following sequences are convergent or not:
Part a: $\left\{\frac{\ln (n)}{\mathrm{n}^{2}}\right\}_{1}^{\infty}$
(Hint: Use L'Hôpital's rule)

$$
\begin{aligned}
& \ell_{n \rightarrow \infty}^{\quad \text { (Hint: Use LHoopital's rule) }} \frac{\ln (n)}{n^{2}}=\frac{\infty}{\infty} \Rightarrow \operatorname{lince~it's~}_{\infty}^{\infty} \text {, we use L'Hôpital's rule } \\
& \frac{1}{n \rightarrow \infty} \frac{1}{2 n}=\frac{1}{2 n^{2}}=\frac{1}{\infty}=0 \\
& \text { Convergent }
\end{aligned}
$$

Part b: $\left\{e^{\sin \left(\frac{1}{n}\right)}\right\}_{1}^{\infty}$

$$
\lim _{n \rightarrow \infty} e^{\sin \left(\frac{1}{n}\right)}=e^{\sin \left(\frac{1}{0}\right)}=e^{\sin (0)}=e^{0}=1 \text { Canrengent }
$$

Part c: $\left\{\frac{\sin (n)}{n^{2}}\right\}_{1}^{\infty}$
(Hint: Use sandwich theorem)
$\lim _{n \rightarrow \infty} \frac{\sin (n)}{n^{2}}$ here me need to use sequleze (Sandwich)
theorem as follows:
Thus, $\operatorname{li}_{n \rightarrow \infty} \frac{\sin (n)}{n^{2}}=0$

$$
\begin{aligned}
& -1 \leq \sin (x) \leq 1 \\
& \frac{-1}{n^{2}} \leq \frac{\sin (x)}{n^{2}} \leq \frac{1}{n^{2}} \\
& \lim _{n \rightarrow \infty}\left(\frac{-1}{n^{2}}\right) \leq l_{n \rightarrow \infty} \frac{\sin (x)}{n^{2}} \leq \ell_{n \rightarrow \infty}^{l_{n}} \frac{1}{n^{2}}
\end{aligned}
$$

$$
-S_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n}
$$

let's subtract the $1^{\text {st }}$ equation hem the $2^{\text {nd }}$ one, we obtain:

$$
\Rightarrow S_{n}-r S_{n}=a-a r^{n} \Rightarrow S_{n}(1-r)=a\left(1-r^{n}\right)
$$

let's now divide both sides by (1-r), we obtain:

$$
\begin{aligned}
& \frac{S_{n}(1-r)}{(1-r)}=a \frac{\left(1-r^{n}\right)}{(1-r)} \Rightarrow S_{n}=a \frac{\left(1-r^{n}\right)}{(1-r)} \\
& \text { So, } l_{n \rightarrow \infty} r^{n}=\left\{\begin{array}{cc}
0 & \text { if }-1<r<1 \Rightarrow|r|<1 \leftarrow \text { (Converge) } \\
\pm \infty & \text { if |r|>1 } \Leftarrow \text { Good Luck in Exam } 2
\end{array}\right.
\end{aligned}
$$

theorem: the geometric
Series: a +artar²...+ ar $^{n-1}$ Best of Luck
is convergent if Mohammed $K \mathcal{A}$ Kaabar
$|r|<1$ and its sum is $S_{n}=a \frac{\left(1-\Delta^{\prime} i^{0}\right.}{(1-r)}=\frac{a}{1-r}$. Otherwise, $\mid f(|r|>1$ then the geometric serer is divergent.

$$
\begin{aligned}
& \text { Convergent. } \\
& \text { Question 14: Show the geometric series theorem. } \\
& S_{n}=a+a r+a y^{2}+a y^{3}+\cdots+a p^{n-1} \\
& \lim _{n \rightarrow \infty}\left(\frac{-1}{n^{2}}\right) \leq \lim _{n \rightarrow \infty} \frac{\sin (x)}{n^{2}} \leq \ell_{n \rightarrow \infty} \frac{1}{n^{2}}
\end{aligned}
$$

