

Final Exam Study Guide MATH 172 Lab: Sections 7 and 8 Lab Instructor (TA): Mohammed Kaabar

Student's Name:-----

Student's ID:-----

Note: This study guide contains comprehensive practice questions for the final exam in Calculus II.

Question 1: Find the volumes of the region generated by revolving $y = \sqrt{x}$, y = 2, and y - axis about the following:

Part a: x - axis

Part b: y - axis

Part c: y = -1

Question 2: Evaluate the following indefinite integrals:

Part a: $\int x^{-3} \ln(x) dx$.

Part b: $\int \sin^5(x) \cos^3(x) dx$.

Part c:
$$\int \frac{dx}{\sqrt{x^2-4}}$$

Part d: $\int \tan^{-1}(\sqrt{x}) dx$.

Part e: $\int \frac{x+2}{x^3+x} dx$.

Question 3: Evaluate the following definite integral:

$$\int_{3}^{4} \frac{dx}{x^2 - 6x + 10}$$

Question 4: Write out the partial fraction decomposition of the following expression. **DO NOT SOLVE FOR COEFFECIENTS**:

$$\frac{x^3 + 2x^2 - x + 1}{x(x^2 - 4)(x^2 + 6)^2}$$

Question 5: Evaluate the following improper integrals and determine whether the integral converges or diverges:

Part a:

$$\int_{1}^{\infty} \frac{e^{-x^3}}{x^{-2}} dx$$

Part b:

 $\int_{-1}^{8} x^{-3} dx$

Question 6:

Part a: Consider the following sequence $\left\{\frac{k^2-1}{k+k^2}\right\}_k = 2$. Show that the sequence is increasing and determine whether the sequence is bounded above, and bounded below.

Part b: Consider the following sequence $\left\{\frac{3^k}{(2k-1)!}\right\}_k = 1^\infty$. Determine whether the sequence is increasing or decreasing or neither.

Question 7: Determine if the series diverges or converges. Be sure to explain which test you use:

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}$$

Question 8: How many terms of the following series:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$$

are needed to approximate the sum of the series with maximum error of $(0.5)10^{-4}$?

Question 9: Determine if the following series diverges or converges. Be sure to explain which test you use:

Part a:

$$\sum_{n=1}^{\infty} \cos\left(\frac{1}{n}\right)$$

Part b:

$$\sum_{n=1}^{\infty} \frac{n+2}{\left(n^{\frac{3}{2}} + n + 1\right)(n+1)}$$

Part c:

$$\sum_{n=2}^{\infty} \frac{\ln(n)}{\left(n^{\frac{3}{2}} + 1\right)}$$

Question 10: Determine the radius and interval of convergence for the following series:

$$\sum_{m=0}^{\infty} \frac{m^2}{m!} (x+1)^m$$

Question 11: Find the following using only Taylor's series:

$$\lim_{x \to 0} \left(\frac{\sin(x^3) - x^3}{x^9} \right)$$

Question 12:

Part a: Change to rectangular coordinates and insert a graph below your result: $r = 6 \cos(\theta)$.

Part b: Sketch a graph for $r = 2 + 4 \cos(\theta)$ using symmetry tests.

Part c: Find the area inside the inner loop of the polar coordinates: $r = 1 + 2\cos(\theta)$.

Question 13: Find the parametric equations for the line segment joining the points (1,2) and (4,7).

Question 14:

Part a: Given $\vec{m} = \langle 2, 4 \rangle$ and $\vec{w} = \langle 3, 1 \rangle$. Find the following:

- 1- $\vec{m} + \vec{w}$
- 2- $\vec{m} 2\vec{w}$
- 3- $||5\vec{w} 2\vec{m}||$

Part b: Given $\vec{v} = \langle 6, 8 \rangle$. Find a unit vector \vec{u} in the same direction of \vec{v} .

Part c: Given $\vec{m} = \langle 3, 2, 0 \rangle$ and $\vec{w} = \langle -2, 4, 3 \rangle$. Find the following:

- 1- $\vec{m} \cdot \vec{w}$
- 2- The angle θ between \vec{m} and \vec{w} .
- 3- $\vec{m} \otimes \vec{w}$

Part d: Find the distance from the point A(2,0,1) to the line joining B(1, -2,2) and C(3,0,2).

Good Luck in the Final Exam Best of Luck Mohammed K A Kaabar