## Written Homework 1 Solutions

§ 7.5 \#57: First, we draw a picture of the bounded region:


Thus, the volume is given by

$$
V=\pi \int_{0}^{4} \frac{x^{2}}{(x+1)^{2}} d x
$$

There are a few different ways to solve this integral. We will show two methods - the first using long division and partial fractions, and the second using u-substitution.

Method 1:

$$
\begin{aligned}
\pi \int_{0}^{4} \frac{x^{2}}{(x+1)^{2}} d x & =\pi \int_{0}^{4} \frac{(x+1)^{2}-2 x-1}{(x+1)^{2}} d x \\
& =\pi \int_{0}^{4}\left(1-\frac{2 x+1}{(x+1)^{2}}\right) d x
\end{aligned}
$$

Note we could have gotten this result by doing long division as well (this is basically the same thing). Now, we have to use partial fractions. We have

$$
\frac{2 x+1}{(x+1)^{2}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}=\frac{A(x+1)+B}{(x+1)^{2}}
$$

So

$$
2 x+1=A(x+1)+B=A x+A+B
$$

Thus, equating coefficients, we get $A=2$ and $A+B=1$. So $B=1-A=-1$. Hence,

$$
\frac{2 x+1}{(x+1)^{2}}=\frac{2}{x+1}+\frac{-1}{(x+1)^{2}}
$$

Going back to our integral, we have

$$
\begin{aligned}
\pi \int_{0}^{4} \frac{x^{2}}{(x+1)^{2}} d x & =\pi \int_{0}^{4}\left(1-\left(\frac{2}{x+1}+\frac{-1}{(x+1)^{2}}\right)\right) d x \\
& =\pi \int_{0}^{4}\left(1-\frac{2}{x+1}+\frac{1}{(x+1)^{2}}\right) d x \\
& =\left.\pi\left(x-2 \ln |x+1|-\frac{1}{x+1}\right)\right|_{0} ^{4} \\
& =\pi\left(4-2 \ln (5)-\frac{1}{5}-0+2 \ln (1)+1\right) \\
& =\pi\left(\frac{24}{5}-\ln (25)\right)
\end{aligned}
$$

Method 2: We compute the integral using u-substitution. Let

$$
u=x+1, d u=d x
$$

Note $x=u-1$. Thus,

$$
\begin{aligned}
\pi \int_{0}^{4} \frac{x^{2}}{(x+1)^{2}} d x & =\pi \int_{1}^{5} \frac{(u-1)^{2}}{u^{2}} d u \\
& =\pi \int_{1}^{5} \frac{u^{2}-2 u+1}{u^{2}} \\
& =\pi \int_{1}^{5}\left(1-\frac{2}{u}+\frac{1}{u^{2}}\right) d u \\
& =\left.\pi\left(u-2 \ln |u|-\frac{1}{u}\right)\right|_{1} ^{5} \\
& =\pi\left(5-2 \ln (5)-\frac{1}{5}-1+2 \ln (1)+1\right) \\
& =\pi\left(\frac{24}{5}-\ln (25)\right)
\end{aligned}
$$

$\S 7.8 \# 62$ : The Fundamental Theorem by Calculus (FTC) can only be applied when the function we are integrating is continuous over the interval of integration. However, $f(x)=\frac{1}{x}$ is not continuous on the interval $[-1,1]$. Note

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty
$$

and

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty
$$

Thus, the FTC cannot be applied.
§ 7.8 \#66: Note

$$
\begin{aligned}
\int_{0}^{\infty} x e^{-x} d x & =\left|\begin{array}{cc}
u=x & d v=e^{-x} d x \\
d u=d x & v=-e^{-x}
\end{array}\right| \\
& =-\left.x e^{-x}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-x} d x \\
& =\left.\left(-x e^{-x}-e^{-x}\right)\right|_{0} ^{\infty} \\
& =\lim _{t \rightarrow \infty}\left(-t e^{-t}-e^{-t}+0+e^{0}\right) \\
& =1 .
\end{aligned}
$$

