Handout 4

MATH 172 Lab: Sections 7 and 8
Lab Instructor (TA): Mohammed Kaabar

Student's Name: \qquad
Student's ID: \qquad
Note: This handout gives you an introduction about Separable Method in Differential Equations.

All Examples in this handout are taken from my recent published textbook:
A Friendly Introduction to Differential Equations, Kaabar, M, Vol 1,164, Jan. 05, 2015.
If you want to learn more about differential equations because you may have a question in exam 2 or final exam about differential equations, I encourage you to download and read sections 1.1 and 4.2 in my textbook.

Instructions to download my textbook for free:

1- Please go to (http://www.mohammed-kaabar.net/\#!differential-equations-book/cuvt)
2- Then, go to "Links to view and download this book"
3- Choose either "ResearchGate PDF Format" or "Google Books ($\mathbf{1 0 0 \%}$ viewable for free".

Separable Method

We will solve some differential equations using a method known as Separable Method. This method is called separable because we separate two different terms from each other.
Definition 1 The standard form of Separable Method is written as follows:
(All in terms of $x) d x-($ All in terms of $y) d y=0$
Note: it does not matter whether it is the above form or in the following form:

$$
\text { (All in terms of } y) d y-(\text { All in terms of } x) d x=0
$$

Example 1: Solve the following differential equation: $\frac{d y}{d x}=\frac{y^{3}}{(x+3)}$
Solution: By using definition 1 , we need to rewrite
the above equation in a way that each term is
separated from the other term as follows:
$\frac{d y}{d x}=\frac{y^{3}}{(x+3)}=\frac{\frac{1}{(x+3)}}{\frac{1}{y^{3}}} \ldots$
Now, we need to do a cross multiplication for (1) as follows:

$$
\begin{equation*}
\frac{1}{y^{3}} d y=\frac{1}{(x+3)} d x \tag{2}
\end{equation*}
$$

$\frac{1}{y^{3}} d y-\frac{1}{(x+3)} d x=0$.
Then, we integrate both sides of (2) as follows:

$$
\begin{gathered}
\int\left(\frac{1}{y^{3}} d y-\frac{1}{(x+3)} d x\right)=\int 0 \\
\int\left(\frac{1}{y^{3}}\right) d y-\int\left(\frac{1}{(x+3)}\right) d x=c \\
\int\left(y^{-3}\right) d y-\int\left(\frac{1}{(x+3)}\right) d x=c \\
-\frac{1}{2} y^{-2}-\ln (|(x+3)|)=c
\end{gathered}
$$

Thus, the general solution is:

$$
-\frac{1}{2} y^{-2}-\ln (|(x+3)|)=c
$$

Example 2: Solve the following differential equation: $\frac{d y}{d x}=e^{3 y+2 x}$
Solution: By using definition 1 , we need to rewrite
the above equation in a way that each term is
separated from the other term as follows:

$$
\begin{equation*}
\frac{d y}{d x}=e^{3 y+2 x}=e^{3 y} \cdot e^{2 x}=\frac{e^{2 x}}{e^{-3 y}} \tag{1}
\end{equation*}
$$

Now, we need to do a cross multiplication for (1) as follows:

$$
\begin{array}{r}
e^{-3 y} d y=e^{2 x} d x \\
e^{-3 y} d y-e^{2 x} d x=0 \ldots \ldots \ldots \ldots \ldots \ldots \tag{2}
\end{array}
$$

Then, we integrate both sides of (2) as follows:

$$
\begin{gathered}
\int\left(e^{-3 y} d y-e^{2 x} d x\right)=\int 0 \\
\int\left(e^{-3 y}\right) d y-\int\left(e^{2 x}\right) d x=c \\
-\frac{1}{3} e^{-3 y}-\frac{1}{2} e^{2 x}=c
\end{gathered}
$$

Thus, the general solution is:

$$
-\frac{1}{3} e^{-3 y}-\frac{1}{2} e^{2 x}=c
$$

Separable Method is Awesome
Good Luck in the Differential Equations Lab
on Thursday
Best Regards,
Mohammed Kaabar

