

Handout 11

MATH 172 Lab: Sections 7 and 8

Lab Instructor (TA): Mohammed Kaabar

Note: This handout is a review for exam 3 in MATH 172.

The following is a summary of convergence and divergence tests for series

Test	Series	Convergent	Divergent	Notes
p – series	$\sum_{k=1}^{\infty} \frac{1}{k^p}$	<i>p</i> > 1	<i>p</i> ≤ 1	You can use to compare with original series as we do in the comparison test
Divergent Test or k th – term	$\sum_{k=1}^{\infty} a_k$	Cannot be used for showing convergence	$\lim_{k\to\infty}a_k\neq 0$	WARNING: We say no- conclusion if $\lim_{k\to\infty} a_k = 0$
Geometric Series	$\sum_{k=1}^{\infty} ar^k$	<i>r</i> < 1	<i>r</i> ≥ 1	If it is convergent, then you need to write the sum as: $S = \frac{a}{1-r}$. You can also use this test for direct and limit comparison tests
$\sum_{k=1}^{\infty} a_k $	$\sum_{k=1}^{\infty} a_k$	If $\sum_{k=1}^{\infty} a_k $ is convergent, then $\sum_{k=1}^{\infty} a_k$ is also convergent	Cannot be used for showing divergence	If you have a series that has a combination of positive and negative terms, then this test can work well

Telescoping Series	$\sum_{\substack{k=1\\-c_{k+1}}}^{\infty} (c_k$	$\lim_{k\to\infty}c_k=L$	Cannot be used for showing divergence	If it is convergent, then you need to write the sum as: $S = c_1 - L$ where c_1 is the initial term (1 st term in series)
Alternating Series	$\sum_{k=1}^{\infty} (-1)^{k-1} a_k$	Three Conditions*: a. Alternating b. Decreasing $(0 < a_{k+1} \le a_k)$. c. $\lim_{k\to\infty} a_k = 0$	Cannot be used for showing divergence	The remainder can be found as follows: $ R_K \le a_{K+1}$
Integral Test	$\sum_{k=1}^{\infty} a_k$ $a_k = g(k) \ge 0$ where g is continuous, positive, and decreasing	$\sum_{k=1}^{\infty} a_k$ is convergent if and only if $\int_1^{\infty} g(x) dx$ is convergent	$\sum_{k=1}^{\infty} a_k \text{ is }$ divergent if and only if $\int_1^{\infty} g(x) dx$ is divergent	The remainder can be found as follows: $0 < R_K$ $< \int_K^\infty g(x) dx$
Direct Comparison	$\sum_{k=1}^{\infty} a_k$	If $\sum_{k=1}^{\infty} b_k$ is convergent and $0 \le a_k \le b_k$ for every k, then $\sum_{k=1}^{\infty} a_k$ is convergent	If $\sum_{k=1}^{\infty} b_k$ is divergent and $0 \le b_k \le a_k$ for every k, then $\sum_{k=1}^{\infty} a_k$ is divergent	$a_k > 0$ and $b_k > 0$
Limit Comparison	$\sum_{k=1}^{\infty} a_k$	$\sum_{k=1}^{\infty} b_k \text{ is convergent if} \\ \lim_{k \to \infty} \frac{a_k}{b_k} = L > 0$	$\sum_{k=1}^{\infty} b_k \text{ is }$ divergent if $\lim_{k \to \infty} \frac{a_k}{b_k} = L > 0$	$a_k > 0$ and $b_k > 0$
Ratio Test	$\sum_{k=1}^{\infty} a_k$	$\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right = L < 1$	$\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right $ $= L > 1$	Test is inconclusive if $\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right $ $= L = 1$
Root Test	$\sum_{k=1}^{\infty} a_k$	$\lim_{k\to\infty}\sqrt[k]{ a_k } = L < 1$	$\lim_{k \to \infty} \sqrt[k]{ a_k } \\ = L > 1$	Test is inconclusive if $\lim_{k\to\infty} a_k = L = 1$

* To determine whether the alternating series is absolutely convergent or conditionally convergent, you need to use the following Method:

Mohammed Kaabar Binary Method for Alternating Series Test:

$\sum_{k=1}^{\infty} a_k$	$\sum_{k=1}^{\infty} a_k $	Туре
1 Convergent <	-1 Convergent	Absolutely Convergent
1 Convergent	0 Divergent	Conditionally Convergent
0 Divergent>	0 Divergent	Divergent
0 Divergent	1 Convergent	Inconclusive