Assessment Quiz

MATH 172 Lab: Section 8

Lab Instructor (TA): Mohammed Kaabar

Student's Name: \qquad SOLUTION

Student's ID: \qquad
Note: I will grade this as a regular quiz. However, everyone who completes the quiz will get $\underline{5}$ points extra credit for participation.

Show your work and circle your answers. Neatness and organization count!
Question 1: (1 point) Suppose m is a continuous function on the interval [n, w]. Consider $\int_{n}^{w} m(x) d x$. What property must m have in order that the integral be interpreted as the area bounded by the graph of m and the x-axis, between $x=n$ and $x=w$?

A function m must be integrable function on $[n, w]$. This means the following:
$\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty}\left\{\sum_{i=1}^{n} m\left(x_{i}\right) \Delta x\right\}$ exists and is unique over all partitions of $[n, w]$, and all choices of x_{i} on a partition. (Note: Any other related answers are correct)

Question 2: (2 points) Evaluate $\int_{0}^{1}(5-3 k) d k$.

$$
\int_{0}^{1}(5-3 k) d k=5 k-\left.\frac{3 k^{2}}{2}\right|_{0} ^{1}=\left(5(1)-\frac{3(1)^{2}}{2}\right)-\left(5(0)-\frac{3(0)^{2}}{2}\right)=\frac{7}{2}=3.5
$$

Question 3: (2 points) Evaluate $\int \beta\left(\beta^{2}+4\right)^{4} d \beta$.
We use integration by substitution as follows:
Let $u=\beta^{2}+4$, then $d u=2 \beta d \beta \rightarrow$ Therefore, $\beta d \beta=\frac{d u}{2}$
Now, our integral becomes as follows:

$$
\int \beta\left(\beta^{2}+4\right)^{4} d \beta=\int u^{4} \frac{d u}{2}=\frac{1}{2} \int u^{4} d u=\frac{1}{2}\left(\frac{u^{5}}{5}\right)=\frac{u^{5}}{10}+c=\frac{1}{10}\left(\beta^{2}+4\right)^{5}+c
$$

