Calc 1 Review Def's, Prop's and Thm's

Limits:

- * Provided that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist and f is continuous at g(a) then
 - i. $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
 - ii. $\lim_{x \to a} \left[f(x) \stackrel{\bullet}{\div} g(x) \right] = \lim_{x \to a} f(x) \stackrel{\bullet}{\div} \lim_{x \to a} g(x)$
 - iii. $\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$
- * A Function f is said to be continuous at a point c if $\lim_{x \to c} f(x) = c$
- * (Squeeze Thm.) Let f,g and h be functions such that $g(x) \le f(x) \le h(x)$ $\forall x$ in an interval containing a. If $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$ then $\lim_{x \to a} f(x) = L$
- * (Derivative) Given that the following limits exist then
 - $\frac{d}{dx}f(x) = f'(x) = \lim_{h \to o} \frac{f(x+h) f(x)}{h} = \lim_{x \to h} \frac{f(x) f(h)}{x h}$
- * (L'Hopitals Thm) Given the functions f and g differentiable on an open interval about a point c and
 - $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$ or 0 then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Derivatives:

- * Power Rule: $\frac{d}{dx} x^r = r x^{r-1}$
- * Sum/Difference Rule: $\frac{d}{dx} [f(x) \pm g(x)] = \frac{d}{dx} f(x) \pm \frac{d}{dx} g(x)$
- * Product Rule: $\frac{\mathrm{d}}{\mathrm{d}x} [f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$

* Quotient Rule:
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

* Chain Rule:
$$\frac{d}{dx} \left[f(g(x)) \right] = \left[\frac{d}{du} f(u) \right] \left[\frac{du}{dx} \right] \text{ where } u = g(x)$$
$$= f'(g(x))g'(x)$$

* Trig Derivatives:

i)
$$\frac{d}{dx} [\sin(x)] = \cos(x), \frac{d}{dx} [\sin^{-1}(x)] = \frac{1}{\sqrt{1-x^2}}$$

ii) $\frac{d}{dx} [\cos(x)] = -\sin(x), \frac{d}{dx} [\cos^{-1}(x)] = \frac{-1}{\sqrt{1-x^2}}$
iii) $\frac{d}{dx} [\tan(x)] = \sec(x)^2, \frac{d}{dx} [\tan^{-1}(x)] = \frac{1}{1+x^2}$
iv) $\frac{d}{dx} [\cot(x)] = -\csc(x)^2, \frac{d}{dx} [\cot^{-1}(x)] = \frac{-1}{1+x^2}$
v) $\frac{d}{dx} [\sec(x)] = \sec(x)\tan(x)$
vi) $\frac{d}{dx} [\csc(x)] = -\csc(x)\cot(x)$

* Special Derivatives

i)
$$\frac{d}{dx} \ln(x) = \frac{1}{x}$$

ii) $\frac{d}{dx} e^{x} = e^{x}$
iii) $\frac{d}{dx} b^{x} = b^{x} \ln(b)$

Integrals:

*
$$\int cf(x)dx = c \int f(x)dx \quad \forall \ c \in \mathbb{R}$$

* $\int [f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx$

* If
$$F'(x) = f(x)$$
 then $\int f(x) dx = F(x) + c$

*(Substitution)

 $\int f(u) \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right) dx = \int f(u) du$

*Special forms:

i)
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan\left(\frac{u}{a}\right) + c$$

ii)
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1}\left(\frac{u}{a}\right) + c$$

iii)
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1}\left(\left|\frac{u}{a}\right|\right) + c$$

*
$$\int_a^b f(x) dx = -\int_b^a f(x) dx$$

*
$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx \quad \text{where f is integrable on [a,b] and c } \epsilon(a,b)$$

*(Fundamental Thm of Calculus pt 1&2) Given f continuous on [a,b] and F is the antiderivative of f on [a,b] then,

i)
$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

ii)
$$\frac{d}{dx} \left[\int_{a}^{x} f(t) dt \right] = f(x)$$

* (Substitution for Definite Ints) Given f is continous on an interval contain g(a) and g(b) then,

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du \quad \text{where } u = g(x) \text{ which is continuous on } [a,b]$$

Examples:

1.) $\lim_{x \to 0} x^{-1} \sin(8x) = 8$ (Hint: L'Hopitals) 2.) $\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0$ (Hint: Squeeze Thm) 3.) $\frac{d}{dx} \sqrt{3x + \frac{2}{\sqrt{x}} - \frac{5}{2x^3}} = \frac{\left(3 - x^{-\frac{5}{2}} + \frac{5}{x^4}\right) \left(3x + \frac{2}{\sqrt{x}} - \frac{5}{3x^3}\right)^{-2}}{2}$ 4.) $\frac{d}{dx} (\arctan(7x^3)) = \frac{21x^2}{1 + 40x^6}$ 5.) $\frac{d}{dx} \left[\frac{\ln(3x)}{a^{4x}} \right] = \frac{x^{-1} - 4\ln(3x)}{a^{4x}}$ $6\frac{d}{dx}\ln\left(\frac{x^2-\pi}{x^3+2}\right) = \frac{2x}{x^2-\pi} - \frac{3x^2}{x^3+2}$ (Hint: use quotient rule for logs first) 7.) $\left[\frac{1}{\sqrt{2x^2}} dx = \arcsin\left(\frac{\sqrt{2x}}{2}\right) + c\right]$ 8.) $\int x^{\frac{-4}{3}} \sqrt{11 - x^{\frac{-1}{3}}} dx = 2 \left(11 - x^{-\frac{1}{3}}\right)^{\frac{5}{2}} + c$ 9.) $\frac{d}{dx} \int_{x}^{x} e^{-3t^2} dt = e^{-3x^2}$ (Hint: FTOC) 10.) $\int (1 + \cos(3x))^5 \sin(3x) \, dx = \frac{-(1 + \cos(3x))^6}{18} + c$ (Hint: use substitution) 11.) $\int_{-\pi}^{\pi} \frac{\ln(2T+1)}{2T+1} dT = \frac{3\ln(2)^2}{2}$ (Hint: use substitution)