

Assessment Quiz

MATH 172 Lab: Section 7

Lab Instructor (TA): Mohammed Kaabar

Student's Name:-----SOLUTION-----

Student's ID:-----

Note: I will grade this as a regular quiz. However, everyone who <u>completes</u> the quiz will get <u>5</u> points extra credit for participation.

Show your work and circle your answers. Neatness and organization count!

Question 1: (1 point) Suppose w is a continuous function on the interval $[k_1, k_2]$. Consider $\int_{k_1}^{k_2} w(x) dx$. What property must w have in order that the integral be interpreted as the area bounded by the graph of w and the x-axis, between $x = k_1$ and $x = k_2$?

A function w must be integrable function on $[k_1, k_2]$. This means the following:

 $\lim_{n\to\infty} R_n = \lim_{n\to\infty} \{\sum_{i=1}^n w(x_i) \Delta x\} \text{ exists and is unique over all partitions of } [k_1, k_2], \text{ and all choices of } x_i \text{ on a partition. (Note: Any other related answers are correct)}$

Question 2: (2 points) Evaluate $\int_0^3 (4+2t) dt$.

$$\int_0^3 (4+2t) \, dt = 4t + t^2 \Big|_0^3 = (4(3) + (3)^2) - (4(0) + (0)^2) = 21$$

Question 3: (2 points) Evaluate $\int \alpha (\alpha^2 - 2)^5 d\alpha$.

We use integration by substitution as follows:

Let
$$u = \alpha^2 - 2$$
, then $du = 2\alpha d\alpha \rightarrow$ Therefore, $\alpha d\alpha = \frac{du}{2}$

Now, our integral becomes as follows:

$$\int \alpha (\alpha^2 - 2)^5 d\alpha = \int u^5 \frac{du}{2} = \frac{1}{2} \int u^5 du = \frac{1}{2} \left(\frac{u^6}{6} \right) = \frac{u^6}{12} + c = \frac{1}{12} (\alpha^2 - 2)^6 + c$$