Assessment Quiz

MATH 172 Lab: Section 7

Lab Instructor (TA): Mohammed Kaabar

Student's Name: \qquad SOLUTION \qquad
Student's ID: \qquad
Note: I will grade this as a regular quiz. However, everyone who completes the quiz will get $\underline{5}$ points extra credit for participation.

Show your work and circle your answers. Neatness and organization count!
Question 1: (1 point) Suppose w is a continuous function on the interval [k_{1}, k_{2}]. Consider $\int_{k_{1}}^{k_{2}} w(x) d x$. What property must w have in order that the integral be interpreted as the area bounded by the graph of w and the x-axis, between $x=k_{1}$ and $x=k_{2}$?

A function w must be integrable function on $\left[k_{1}, k_{2}\right]$. This means the following:
$\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty}\left\{\sum_{i=1}^{n} w\left(x_{i}\right) \Delta x\right\}$ exists and is unique over all partitions of $\left[k_{1}, k_{2}\right]$, and all choices of x_{i} on a partition. (Note: Any other related answers are correct)

Question 2: (2 points) Evaluate $\int_{0}^{3}(4+2 t) d t$.
$\int_{0}^{3}(4+2 t) d t=4 t+\left.t^{2}\right|_{0} ^{3}=\left(4(3)+(3)^{2}\right)-\left(4(0)+(0)^{2}\right)=21$

Question 3: (2 points) Evaluate $\int \alpha\left(\alpha^{2}-2\right)^{5} d \alpha$.
We use integration by substitution as follows:
Let $u=\alpha^{2}-2$, then $d u=2 \alpha d \alpha \rightarrow$ Therefore, $\alpha d \alpha=\frac{d u}{2}$
Now, our integral becomes as follows:

$$
\int \alpha\left(\alpha^{2}-2\right)^{5} d \alpha=\int u^{5} \frac{d u}{2}=\frac{1}{2} \int u^{5} d u=\frac{1}{2}\left(\frac{u^{6}}{6}\right)=\frac{u^{6}}{12}+c=\frac{1}{12}\left(\alpha^{2}-2\right)^{6}+c
$$

