

Study Guide 3

MATH 172 Lab: Sections 7 and 8
 Lab Instructor (TA): Mohammed Kaabar

Student's ID: \qquad
Note: This study guide contains my practice questions that I think will be useful for preparing you for the third exam in Calculus II.

Question 1: Determine if the series diverges or converges. Be sure to explain which test you use:

$$
\sum_{n=1}^{\infty} \frac{2+(-1)^{n}}{n \sqrt{n}}
$$

Question 2: Determine if the series diverges or converges. Be sure to explain which test you use:

$$
\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{2} e^{-n}
$$

Question 3: Determine whether the following series diverges, converges conditionally, or converges absolutely:

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n+1}}{\sqrt{n^{2}+1}}
$$

Question 4: Determine whether the following series diverges, converges conditionally, or converges absolutely:

$$
\sum_{n=1}^{\infty}(-1)^{n}(\sqrt{n+1}-\sqrt{n})
$$

Question 5: Use a comparison test to determine whether the integral converges or diverges:

$$
\int_{1}^{\infty} \frac{1+\sec ^{2} x}{x} d x
$$

Question 6: Find the sum of the following series:

$$
\sum_{k=1}^{\infty} \frac{4}{k(k+2)}
$$

Question 7: Determine whether the following sequence is increasing or decreasing:

$$
a_{n}=\frac{3^{n}}{(n+2)!}
$$

Question 8: Determine whether the following sequence converges or diverges:

$$
a_{n}=\frac{e^{n}+2}{e^{2 n}-1}
$$

Question 9: Show the following sequence is bounded:

$$
a_{n}=\frac{3 n^{2}-2}{n^{2}+1}
$$

Question 10: Use the integral test to determine the convergence or divergence of the following series:

$$
\sum_{m=1}^{\infty} \frac{e^{\frac{1}{m}}}{m^{2}}
$$

Question 11: Determine whether the series converges or diverges. If convergent, find the sum of the series:

$$
\sum_{m=2}^{\infty}\left(\frac{2}{3^{m}}+\frac{1}{2^{m}}\right)
$$

Question 12: Prove that $0.1 \overline{9}=0.2$.

Question 13: Show that the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{5^{n}}$ is convergent. How many terms are needed to approximate the series with the maximum error of $3(10)^{-2}$.

Question 14: Determine the radius and interval of convergence for the series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-1)^{n}}{(2 n+3) 4^{n}}
$$

Question 15:

Part a: Find a power series representation about $x=0$ for $f(x)=\frac{1}{5+4 x}$. Then find the radius of convergence.

Part b: Use part a, to find a power series representation for $g(x)=-\frac{4}{(5+4 x)^{2}}$.

Part c: Use part b, to find a power series representation for $h(x)=\ln (5+4 x)$.

Question 16: How many terms of the Maclaurin series for $\ln (x+1)$ do you need to use to estimate $\ln (1.4)$ within 0.001 ?

Good Luck in Exam 3

Best of Luck
Mohammed K A Kaabar

