Written Homework 4 Solutions

§ 8.5 \#40: Note

$$
\left(\frac{1}{2}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\left(\frac{3}{4}\right)^{4}+\cdots=\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n+1} .
$$

To show this sum diverges, we will show that

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n+1} \neq 0
$$

To find this limit, we let

$$
y=\left(\frac{n}{n+1}\right)^{n+1} .
$$

Note we want to show that $\lim _{n \rightarrow \infty} y \neq 0$. Taking the natural log on both sides gives

$$
\ln y=(n+1) \ln \left(\frac{n}{n+1}\right)=\frac{\ln \left(\frac{n}{n+1}\right)}{\frac{1}{n+1}} .
$$

Then we take the limit on both sides to get

$$
\lim _{n \rightarrow \infty} \ln y=\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{n}{n+1}\right)}{\frac{1}{n+1}} .
$$

The right-hand limit is in the form $\frac{0}{0}$, so we can use L'Hospital's Rule, and we get

$$
\lim _{n \rightarrow \infty} \ln y=\lim _{n \rightarrow \infty}-\frac{n+1}{n}=-1 .
$$

So

$$
\ln \left(\lim _{n \rightarrow \infty} y\right)=-1
$$

It follows that

$$
\lim _{n \rightarrow \infty} y=e^{-1}=\frac{1}{e} \neq 0 .
$$

So the series diverges by the Divergence Test.
§ 8.5 \#42: Let

$$
a_{k}=\left(\frac{k^{2}}{2 k^{2}+1}\right)^{k} .
$$

Note

$$
\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\lim _{k \rightarrow \infty} \frac{k^{2}}{2 k^{2}+1}=\frac{1}{2}<1
$$

So the series converges by the root test.
$\S 8.5$ \#44: Note

$$
\sum_{k=1}^{\infty} \frac{\sin ^{2}(k)}{k^{2}} \leq \sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

which is a convergent p-series. So the series converges by the comparison test.
$\S 8.5 \# 46$:
Method 1: We use the ratio test. Let

$$
a_{k}=\frac{2^{k}}{e^{k}-1}
$$

Note

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}} & =\lim _{k \rightarrow \infty} \frac{2^{k+1}}{e^{k+1}-1} \cdot \frac{e^{k}-1}{2^{k}} \\
& =\lim _{k \rightarrow \infty} \frac{2\left(e^{k}-1\right)}{e^{k+1}-1} \\
& =\lim _{k \rightarrow \infty} \frac{2\left(e^{k}-1\right)}{e\left(e^{k}\right)-1} \\
& =\frac{2}{e}<1
\end{aligned}
$$

So the series converges by the ratio test.
Method 2: Let

$$
a_{k}=\frac{2^{k}}{e^{k}-1}, \quad b_{k}=\frac{2^{k}}{e^{k}}
$$

Note

$$
\sum_{k=1}^{\infty} b_{k}=\sum_{k=1}^{\infty}\left(\frac{2}{e}\right)^{k}
$$

is a convergent geometric series, since $\frac{2}{e}<1$. Next, note

$$
L=\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=1
$$

Since $0<L<\infty$, by the limit comparison test, either both series converge or both diverge. Since $\sum b_{k}$ converges, so does $\sum a_{k}$.
$\S 8.5 \# 52$: Again, we use the ratio test. Let

$$
a_{k}=\frac{(k!)^{3}}{(3 k)!}
$$

Note

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}} & =\lim _{k \rightarrow \infty} \frac{((k+1)!)^{3}}{(3(k+1))!} \cdot \frac{(3 k)!}{(k!)^{3}} \\
& =\lim _{k \rightarrow \infty} \frac{(k+1)^{3}}{(3 k+3)(3 k+2)(3 k+1)} \\
& =\frac{1}{27}<1
\end{aligned}
$$

So the series converges by the ratio test.
$\S 8.6$ \#12: We use the Alternating Series Test. Let

$$
a_{k}=\frac{1}{\sqrt{k}} .
$$

Note
(1) $\quad a_{k+1}=\frac{1}{\sqrt{k+1}}<\frac{1}{\sqrt{k}}=a_{k}, \quad$ and
(2) $\lim _{k \rightarrow \infty} a_{k}=0$.

So, by the Alternating Series Test, the series converges.

