

Department of Mathematics Moreno Valley College

Mathematics 52 Course ID: (27488) <u>Second Take-Home Midterm</u> Fall 2016

Dates: November 15th, 2016 and November 16th, 2016 Times: 8:00 AM – 10:05 AM and 2:00 PM – 4:05 PM

Professor: Mohammed Kaabar

P1	P2	P3	P4	P5	P6	P7	P8	P9	EC	Total
20	10	10	10	10	10	10	10	10	5	100

Student Name:....

Student ID:....

Exam Instructions:

- 1- This exam has 8 questions and two extra credit questions.
- 2- Make sure you answer all questions.
- 3- Cheating = "F"
- 4- Make sure to include this page in your submission materials.

Student Signature:.....

Problem 1 (20 points): Determine whether the following is <u>**TRUE</u>** or <u>**FALSE**</u> and if it is false <u>**EXPLAIN**</u> why:</u>

- a. Linear inequality is a mathematical statement that has a mathematical expression that is greater than only.
- b. The solution for -5 + 7x < 3x + 7 is 3 > x.
- c. The solution for $\left(\frac{4z+5}{2}-\frac{1}{3}\right) \ge \left(-\frac{7}{2}+z\right)$ is $z \le -\frac{34}{6}$.
- d. The general form of the interval notation can be written as {variable|solution }.
- e. (0,2) is located on the first quadrant only.
- f. (-1,2) is located on the second quadrant.
- g. Given that l_1 and l_2 are non-vertical lines. If $l_1 \parallel l_2$, then $m_1 + m_2 = -1$.
- h. Given that l_1 and l_2 are non-vertical lines. If l_1 and l_2 make an angle of 90°, then $m_1 \cdot m_2 = -1$.
- i. It is impossible to derive the slope-point form of equation of line using the slope formula by considering the slope passes through (x_1, y_1) and (x, y).
- j. y intercept is defined as a point on the y axis that is considered the passing point for the graph of equation: y = mx + b so the y - intercept is (b, 0).

Problem 2 (10 points): Answer each of the following:

a. What is the name of zero slope? -----

b. What is the name of undefined slope? -----

c. What is the positive slope? -----

d. Draw the positive slope:

e. What is the negative slope? -----

f. Draw the negative slope:

g. Derive the point-slope form of the equation of line:

Hint: Use (x_1, y_1) and (x, y) as two given points and write the slope formula $m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$

Problem 3 (10 points): In our class, we talked about two theorems of lines: vertical line and horizontal line. Discuss those two theorems and make sure to include examples and graphs for both lines.

Hint: Use "Slope of a Line" lecture notes.

Problem 4 (10 points): In our class, we talked about two theorems of non-vertical lines:

Discuss those two theorems and make sure to include examples and graphs for both non-vertical lines.

Hint: Use "Slope of a Line" lecture notes.

Problem 5 (10 points): Solve <u>TWO</u> of the following <u>FIVE</u> problems:

- 1- Solve for x given that |-2x + 2| = 3.
- 2- Solve for x given that $|5x + 12| \ge 6$.
- 3- A line passes through (2, -1) and it is perpendicular to another line: 2y + 3 - 5y = -2x + 5x. Write the equation for this line.
- 4- Solve the following linear inequality:

$$15\beta + \sqrt[3]{8} < (-6766776.766)^0 + 2\beta$$

5- Solve the following linear inequality:

$$-2\beta + 1^{\sqrt[3]{8}} < \left(-\frac{-23433.63}{-343544.12}\right)^0 + 12\beta$$

Problem 6 (10 points): Discussion Problems:

a. When we talked about dividing the polynomials, we mentioned that there are two methods of division: long and synthetic division. In addition, we talked about a common property for both of them and a limited property for synthetic division only. Discuss that in more details.

b. We talked about the properties of factoring, and I asked a question: Given that *a* and *b* are real numbers, then Is $(a - b)^2 = a^2 - b^2$???!!! Discuss that in more details.

Problem 7 (10 points): Use either long division or synthetic division to do the following:

$$\frac{x^3 + x^2 - x - 1}{x - 3}$$

Problem 8 (10 points): Factor each of the following:

a.
$$(x^2 - 12)$$

b. (*x* − 25)

c. $(16a^2 - 48ac + 36c^2 - 100)$

d. $(25x^2 - 16)$

e. $(24z^2 - 12)$

Problem 9 (10 points): Simplify each of the following:

a.
$$(2x - 1)^2$$

b.
$$x^3y^{-1}z^2m^2ym^{-2}x^{-2}$$

c.
$$\left(-\frac{x^3}{3y^2x^7}\right)^3$$

d.
$$(x^2 + 1)^2$$

e.
$$7y^2x^3(-3x^{-3}y^{-5})$$

Extra Credit Problem (5 points): Use only synthetic division to do the following:

$$\frac{x^3 + x^2 - x - 1}{2x^2 - x + 2}$$

I wish you best of luck in Exam 2

Best Regards Professor: Mohammed Kaabar

