Department of Mathematics Moreno Valley College

Mathematics 52

Course ID: (27488)
Second Take-Home Midterm
Fall 2016
Dates: November $15^{\text {th }}, 2016$ and November $16^{\text {th }}, 2016$
Times: 8:00 AM - 10:05 AM and 2:00 PM - 4:05 PM

Professor: Mohammed Kaabar

P1	P2	P3	P4	P5	P6	P7	P8	P9	EC	Total
20	10	$\mathbf{1 0}$	$\mathbf{5}$	$\mathbf{1 0 0}$						

Student Name:

\qquad

Student ID:

\qquad

Exam Instructions:

1- This exam has 8 questions and two extra credit questions.
2- Make sure you answer all questions.
3- Cheating $=$ " F "
4- Make sure to include this page in your submission materials.

Problem 1 (20 points): Determine whether the following is TRUE or FALSE and if it is false EXPLAIN why:
a. Linear inequality is a mathematical statement that has a mathematical expression that is greater than only.
b. The solution for $-5+7 x<3 x+7$ is $3>x$.
c. The solution for $\left(\frac{4 z+5}{2}-\frac{1}{3}\right) \geq\left(-\frac{7}{2}+z\right)$ is $z \leq-\frac{34}{6}$.
d. The general form of the interval notation can be written as $\{$ variable|solution $\}$.
e. $(0,2)$ is located on the first quadrant only.
f. $(-1,2)$ is located on the second quadrant.
g. Given that l_{1} and l_{2} are non-vertical lines. If $l_{1} \| l_{2}$, then $m_{1}+m_{2}=-1$.
h. Given that l_{1} and l_{2} are non-vertical lines. If l_{1} and l_{2} make an angle of 90°, then $m_{1} \cdot m_{2}=-1$.
i. It is impossible to derive the slope-point form of equation of line using the slope formula by considering the slope passes through $\left(x_{1}, y_{1}\right)$ and (x, y).
j. $\quad y$-intercept is defined as a point on the y-axis that is considered the passing point for the graph of equation: $y=m x+b$ so the y-interecept is $(b, 0)$.

Problem 2 ($\mathbf{1 0}$ points): Answer each of the following:
a. What is the name of zero slope? \qquad
b. What is the name of undefined slope? \qquad
c. What is the positive slope? --
d. Draw the positive slope:
e. What is the negative slope? \qquad
f. Draw the negative slope:
g. Derive the point-slope form of the equation of line:

Hint: Use $\left(x_{1}, y_{1}\right)$ and (x, y) as two given points and write the slope formula $m=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}$

Problem 3 (10 points): In our class, we talked about two theorems of lines: vertical line and horizontal line. Discuss those two theorems and make sure to include examples and graphs for both lines.

Hint: Use "Slope of a Line" lecture notes.

Problem 4 (10 points): In our class, we talked about two theorems of non-vertical lines:
Discuss those two theorems and make sure to include examples and graphs for both non-vertical lines.

Hint: Use "Slope of a Line" lecture notes.

Problem 5 (10 points): Solve TWO of the following FIVE problems:
1- Solve for x given that $|-2 x+2|=3$.
2- Solve for x given that $|5 x+12| \geq 6$.
3- A line passes through $(2,-1)$ and it is perpendicular to another line:
$2 y+3-5 y=-2 x+5 x$. Write the equation for this line.
4- Solve the following linear inequality:

$$
15 \beta+\sqrt[3]{8}<(-6766776.766)^{0}+2 \beta
$$

5- Solve the following linear inequality:

$$
-2 \beta+1^{\sqrt[3]{8}}<\left(-\frac{-23433.63}{-343544.12}\right)^{0}+12 \beta
$$

Problem 6 (10 points): Discussion Problems:
a. When we talked about dividing the polynomials, we mentioned that there are two methods of division: long and synthetic division. In addition, we talked about a common property for both of them and a limited property for synthetic division only. Discuss that in more details.
b. We talked about the properties of factoring, and I asked a question: Given that a and b are real numbers, then Is $(a-b)^{2}=a^{2}-b^{2}$???!!! Discuss that in more details.

Problem 7 (10 points): Use either long division or synthetic division to do the following:

$$
\frac{x^{3}+x^{2}-x-1}{x-3}
$$

Problem 8 (10 points): Factor each of the following:
a. $\left(x^{2}-12\right)$
b. $(x-25)$
c. $\left(16 a^{2}-48 a c+36 c^{2}-100\right)$
d. $\left(25 x^{2}-16\right)$
e. $\left(24 z^{2}-12\right)$

Problem 9 (10 points): Simplify each of the following:
a. $(2 x-1)^{2}$
b. $x^{3} y^{-1} z^{2} m^{2} y m^{-2} x^{-2}$
c. $\left(-\frac{x^{3}}{3 y^{2} x^{7}}\right)^{3}$
d. $\left(x^{2}+1\right)^{2}$
e. $7 y^{2} x^{3}\left(-3 x^{-3} y^{-5}\right)$

Extra Credit Problem (5 points): Use only synthetic division to do the following:

$$
\frac{x^{3}+x^{2}-x-1}{2 x^{2}-x+2}
$$

