Final Exam Study Guide
MATH 140 Lab: Section 1
Lab Instructor (TA): Mohammed Kaabar

Student’s Name:-------------------------------------------------------------
Student's ID: $\qquad$
Note: This study guide contains my practice questions that I think will be useful for preparing you for the final exam in Calculus for Life Scientists.

Question 1: Evaluate the following limit:

$$
\lim _{k \rightarrow \infty}\left(\ln k+e^{k}\right)
$$

Question 2: Evaluate the following limit:

$$
\lim _{n \rightarrow 1}\left(\frac{\tan (n-1)}{(n-1)}\right)
$$

Question 3: Evaluate the following limit:

$$
\lim _{x \rightarrow-\infty}\left(\frac{\left(2 x^{2}+1\right)^{2}-x^{4}+x+1}{1-x-2 x^{2}}\right)
$$

Question 4: Evaluate the following limit:

$$
\lim _{z \rightarrow 1}\left(\frac{\tan (z-1)}{z^{3}-1}\right)
$$

Question 5: Find $y^{\prime}$ without simplifying your final answer:

$$
y=\sqrt{\frac{2 x^{2} e^{x}(x+1)}{x^{2}+1}}
$$

Question 6: Find $y^{\prime}$ without simplifying your final answer:

$$
y=(\sin (x))^{x}
$$

Question 7: Evaluate the following limit:

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)
$$

Question 8: Evaluate the following limit:

$$
\lim _{x \rightarrow 0}\left(\frac{x^{3}}{x-\tan (x)}\right)
$$

Question 9: Use L'Hôpital's rule to find the following limit:

$$
\lim _{x \rightarrow 1}\left(\frac{1-x+\ln x}{1+\cos (\pi x)}\right)
$$

Question 10: Find $\frac{d y}{d x}$ :

$$
y=\sin \left(x+\sqrt{x^{2}+5}\right)
$$

Question 11: Find $\frac{d^{2} y}{d x^{2}}$.

$$
x y+x^{2}=y^{3}
$$

Question 12: Find the equation of the tangent line at the point $(0,1)$ to the following curve:

$$
x^{2} y+7 y=3 e^{x}+4
$$

Question 13: Evaluate the following limit:

$$
\lim _{x \rightarrow \infty}\left(\frac{x+3}{x}\right)^{2 x}
$$

Question 14: Given the following function:

$$
f(x)=x(x-1)^{3}
$$

Part a: Find the $x$ and $y$ intercepts for the graph of $f$.

Part b: Find the intervals on which the function is increasing and decreasing and locate any local extrema.

Part c: Find the intervals on which the function is concave up and concave down and identify aby inflection points if there are any.

Part d: Sketch the graph of $f$.

Question 15: Find the indefinite integral for the following:
a. $\int \frac{(x+2)(x-1)}{x} d x$
b. $\int \frac{4 x^{3}+2}{2 x^{4}+4 x+1} d x$
c. $\int(\sec x \tan (x)+\cos (3 x)-5) d x$
d. $\int \frac{x^{4}+3}{x} d x$
e. $\int\left(e^{3 x}+\frac{1}{\sqrt[3]{x}}\right) d x$
f. $\int x^{3}(\sqrt{x}-3)^{2} d x$

Question 16: Find the definite integral for the following:

$$
\int_{1}^{e} \frac{(\ln (x))^{2}}{x} d x
$$

Question 17: Find the following integral for the following:

$$
\int \cos (\sqrt[3]{x}) d x
$$

Hint: Use substitution and integration by parts

Question 18: Solve the following differential equation:

$$
\frac{d y}{d x}=e^{3 y+2 x}
$$

Question 19: Given the following function:

$$
y(t)=\frac{a}{k}\left(1-e^{-k t}\right)
$$

Assume that an antibiotic with half-life $T_{\frac{1}{2}}=12$ hour is given to a patient intravenously at a rate of $a=50 \mathrm{mg} /$ hour .

Part a: Find the rate constant $k$.

Part b: Given that: $\frac{d y}{d t}=a-k y$. What is the steady state solution for the amount of drug delivered by infusion in $\frac{d y}{d t}$.

Question 20: A rectangle has its base on the x -axis and its upper two vertices on the parabola $y=12-x^{2}$. Find the largest area that the rectangle can have?

# Good Luck in Final Exam Mohammed Kaabar 

